ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

a)	(i)	the internal conditions of the body; such as body temperature/blood pH/blood salt concentration/blood osmotic pressure;	2	
	(ii)	negative feedback control is when a varying physiological value is returned to its mean value by the controlling mechanism (credit example. eg. sweating to reduce body temperature); positive feedback control is when a physiological value is pushed above its mean value by the controlling mechanism (credit example eg. increased uterine contractions in birth);	2	
	(iii)	-ve : normal body temperature/blood pressure/blood osmotic pressure/blood pH/ventilation rate/any correct eg; +ve : oxytocin release during birth/oxytocin release in suckling/body temperature during fever/any correct eg;	2	
	(iv)	the reduction or suppression of a feedback control mechanism when the required physiological value is reached; (usually feedback control mechanisms are not completely turned off)	1	
(b)	 (b) Amoeba: osmoregulation/water removal by the contractile vacuole; Marram grass: water loss from leaves by hinge cells closing stomata/rolling leaf up; Human: control of blood pressure/blood osmotic pressure/blood salt and water concentration by ADH mechanism /any other valid examples; 			
	TOTAL 10			

(a) thermoreceptors in skin sense surface/shell temperature;	
thermoreceptors in hypothalamus sense core/blood temperature;	
relay nerve impulses to heat gain/heat loss/thermoregulatory centres in hypothalamus;	3
(b) baroreceptors sense blood pressure;	
situated in walls of arterial arches/bases of great veins/aortic and carotid bodies;	
relay nerve impulses to vasomotor centre in brain/medulla (to regulate cardiac output/blood pressure);	3
(c) glucoreceptors sense blood glucose concentrations;	
situated on cell membranes of alpha and beta cells of the islets of Langerhans;	
if blood glucose concentration rises beta cells stimulated to release insulin to lower it	
/if blood glucose concentration falls alpha cells stimulated to release glucagon to raise it;	3
(d) proprioceptors are tension and pressure receptors;	
situated in muscles and tendons/ ligaments/joint capsules;	
send nerve impulses to cerebellum to regulate muscle tone/enable balance/coordinated movements;	3
	TOTAL 12

ANSWERS & MARK SCHEMES

QUESTIONSHEET 3

(a) (i)	low/decreasing value as it used up/fasting blood glucose concentration; value is not obscured by absorption of glucose from gut to blood;	2
(ii)	4.2 millimoles dm ⁻³ ; (allow range 4.1 to 4.3)	1
(b) A-B B-C	 : glucose being absorbed from gut (into blood stream); faster than it is being converted to glycogen; and stored in liver/muscles; under the influence of insulin; : glucose absorption from gut to blood is reducing/stopping; β-cells release more insulin; 	max 3
	α -cells release less glucagon; conversion to glycogen for storage is faster than absorption;	max 3
		TOTAL 9

QUESTIONSHEET 4

(a) (i)		
	any one of: mammals/birds/flowering plants/specific example of these;	
	non regulators do not control their physiological values within narrow limits;	
	any one of: cnidarians/algae/specific example of these;	4
	(most other organisms are regulators for some values and non regulators for other values)	
(ii)	exogenous rhythms are those that are related to regular changes in environmental stimuli;	
	eg. heart rate /blood pressure;	
	endogenous rhythms are those that follow a spontaneous internal cycle;	4
	eg. core temperature/sleep patterns;	
(b) meta	bolism out of phase;	
due	to crossing time zones;	
thus	may need to be awake when body clock thinks it is time to sleep/body clock confused/ref body clock;	
ref. t	o melatonin;	4
		TOTAL 12

QUESTIONSHEET 5

negative feedback; hypothalamus; osmolality/osmotic pressure/sodium ion concentration; <u>posterior</u> pituitary body; neurosecretion; collecting duct; water permeable; reabsorbed;

TOTAL 8

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

Action	Hormone
Breakdown of glycogen in the liver	glucagon/adrenaline;
Non shivering thermogenesis	adrenaline;
Lowering of blood glucose concentration	insulin;
Acceleration of heart beat	adrenaline/thyroxine;
Reduction of water loss in urine	antidiuretic hormone;
Increase in flow of gastric juice	gastrin;
Increase in antibody release by plasma cells	interleukin;

TOTAL 7

QUESTIONSHEET 7

(a) (i)	 so that water content of body is maintained at constant level/no dehydration/ no over dilution; so that blood concentration/osmotic pressure/volume/blood pressure can be kept constant; 		2
(ii)	1:	sweat; due to temperature rise and so more secretion of sweat to cool body (using latent heat);	2
	2		
	2:	respiration; more energy required so faster respiration thus more metabolic water released; (exhaled air; more respiration thus more gas exchange thus more water lost by evaporation;)	2
(iii)	mor	re water loss by increased sweating;	
	thus	s rise in blood concentration sensed by osmoreceptors (in hypothalamus);	
	thus	s ADH secretion stimulated and more water reabsorbed from urine in collecting ducts (to blood);	3
(b) osm	orece	eptors in hypothalamus;	
sens	e wh	en blood is too concentrated or too dilute;	
if to	o cor	centrated ADH release from posterior pituitary is stimulated;	
ADI	H in l	blood causes collecting tubule walls to become water permeable;	
so th	nat w	ater is reabsorbed from urine;	
high (allo	salt	concentration in renal medulla (which results from counter current mechanism) enhances water reabsorption; a powerse points about ADH not released as alternative scheme)	max 5
		ΤΟΤΑ	L 14
OUES		NSHFFT 8	

 (a) Any four of: diabetes insipidus is a failure of ADH production/by the <u>posterior</u> pituitary/ thus excessive diuresis/water loss through urine occurs (resulting in dehydration/death)/ diabetes mellitus is a failure of the beta cells in the islets (of Langerhans) to produce insulin/ thus insufficient blood glucose is converted to glycogen and glucose is lost in urine;;;; 	4
 (b) homeostasis is the regulation of the internal environment within narrow limits; using negative and positive feedback mechanisms; haemostasis is the stopping of bleeding after tissue damage; enabled by the blood platelets/clotting cascade mechanism; 	4
(c) diuresis is the loss of water in urine; regulated by antidiuretic hormone; deamination is the removal of (toxic) amine groups from unwanted amino acids; occurs in the liver/ornithine cycle to make urea (for excretion);	4

A2.3

ANSWERS & MARK SCHEMES

QUESTIONSHEET 9

(a) osmoregulation/to control Amoeba's water content;	1
(b) collects excess water from cytoplasm using energy from ATP; when vacuole is full it bursts at the cell membrane releasing water to exterior;	2
(c) water enters Amoeba along concentration gradient between external and internal environments; in pure water cytoplasm is most hypertonic to exterior and so most water enters and so vacuole has to work harder; as cytoplasm becomes less hypertonic to exterior less water enters and so vacuole works less; at 70% seawater cytoplasm is isotonic to sea water and so osmotic entry and loss of water are the same and so vacuole need not operate:	
(IOB recommends that the terms 'water potential' and 'solute potential' are not applied to animals)	4
TOTAL	7

(a) (i)	ascending but has a this lower	limb of loop of Henle is always impermeable to water; very powerful active transport mechanism for pumping Na ⁺ /Cl ⁻ out of tubule (into interstitial fluid); s the concentration as tubular fluid rises up ascending limb;	
	Na ⁺ /C1 ⁻ di raising co	ffuse into descending limb (from higher concentration in surrounding interstitial fluid); ncentration of tubular fluid as it passes down the decending limb;	max 4
(ii)	maintains	a high salt concentration in the medulla/interstitial fluid;	
	this enabl	es water reabsorption from the collecting ducts (when ADH is present);	2
(iii)	maintains and so hel	blood salt concentration; ps to maintain blood osmotic pressure/blood pressure;	2
(b) ADI	I: renders	the collecting duct walls permeable to water;	
	so that	water may be reabsorbed or lost thus regulating blood volume/ pressure/concentration;	2
Aldo	sterone:	stimulates uptake of Na ⁺ by active transport;	
		from ascending limb of loop of Henle (thus retains body sodium ions); stimulates active secretion of K^+ :	
		into distal convoluted tubule (thus lowering body potassium ion content);	max 3
		то)TAL 13

ANSWERS & MARK SCHEMES

QUESTIONSHEET 11

(a) (i)	when for instance, blood volume varies above or below its norm; a mechanism is operated to bring the varying value back to the norm;	2
(ii)	when a mechanism has operated to bring a value back to the norm, the mechanism activity is reduced (but not totally switched off);	1
(iii)	when a hormone is secreted as a result of nervous stimulation;	1
(b) (i)	in the midbrain/just behind the pituitary body;	1
(ii)	to regulate physiological functions in general - such as sleep/body temperature/blood osmolality/any other valid example;	1
(c) Any increation increation thus raise thus thus	 a four of: eased blood pressure increases glomerular blood pressure/ eases ultrafiltration/ a larger volume of glomerular filtrate is formed (per unit time)/ ed blood pressure inhibits ADH release/ collecting ducts become impermeable to water/ a no water reabsorbed from urine so urine volume increases;;;; 	4
	Т	OTAL 10

QUESTIONSHEET 12

(a) (i) $A = renal artery; B = ureters; C = urethra; D = dorsal aorta;$	4
(ii) male urethra is much longer (since it extends through the penis);	1
(b) 1. removal of toxic waste products from blood/excretion;	
2. regulation of blood pH/osmolality/pressure/ref homoeostasis of body fluids;	2
(c) to prevent urination/micturition until a convenient time/prevents constant dribbling of urine from bladder/keeps bladder closed to reduce infection risk;	1
	TOTAL 8

QUESTIONSHEET 13

(a) C; (b) B; (c) A; (d) B; TOTAL 4

A2.3

HOMEOSTASIS

ANSWERS & MARK SCHEMES

QUESTIONSHEET 14

(a) 60×120 ; = 7200 cm ³ or 7.2 dm ³ ; (units essential)	2
(b) 125 x 60 x 24; = $180000 \text{ cm}^3 \text{ or } 180 \text{ dm}^3$; (units essential)	2
(c) $\frac{180}{7.2}$; = 25;	2
 (d) Any three of: about 80% / much of the water is reabsorbed back to blood/ in the proximal convoluted tubule/ more water is reabsorbed via the collecting ducts/ in the presence of ADH;;; 	3
	TOTAL 9

(a) (i)	A = glomerulus; B = renal/Bowman's capsule; C = proximal/first convoluted tubule; D = descending limb (of loop of Henle); E = ascending limb (of loop of Henle);		
	F = distal/second convoluted tubule;	7	
	G = conecting duct,	1	
(ii)	C is very permeable to water;		
	E is never permeable to water;		
	G is only water permeable if ADH is present;	3	
(b) (i)	Any two of:		
	glucose/amino acids/(some) urea;;	2	
(ii)	Any two of:		
()	hydrogen ions/potassium ions/creatinine/hydrogen carbonate ions/ammonia;;	2	
(c) (i)	to achieve a high salt concentration in the medulla of the kidney/ around the collecting ducts:		
(c) (l)	so that water may be reabsorbed osmotically from urine in collecting ducts (in presence of ADH);	2	
()			
(11)	Any two of:		
	ADH hereases hermeability of collecting ducts to water/		
	thus in absence of ADH water is not reabsorbed.	2	
	and in absence of ADA water is not reabsorbed,	2	
		TOTAL 19	
		IUIAL 10	

ANSWERS & MARK SCHEMES

QUESTIONSHEET 16

 (a) ureter carries urine from kidney to bladder; urethra carries urine from bladder to exterior; ureter lined by a transitional epithelium; urethra lined by compound/stratified squamous epithelium; 	4
(b) urinary bladder stores urine until a suitable time for release; gall bladder stores bile (from liver) until food enters duodenum; urinary bladder situated in pelvis/just ventral to rectum/lined by transitional epithelium; gall bladder lies near liver/lined by columnar epithelium;	4
 (c) glomerulus is a knot of capillaries situated in the renal capsule; vasa recti form a network of capillaries over the nephron tubules; glomerulus is concerned with ultrafiltration/forming glomerular filtrate; vasa recti are concerned with exchange of materials between tubular fluid and blood; 	4
 (d) afferent arteriole carries blood from renal/arcuate artery branch to glomerulus; efferent arteriole carries blood from glomerulus to vasa recti; efferent arteriole narrower than afferent arteriole (so that blood pressure in the glomerulus is raised); blood in efferent arteriole has reduced urea/glucose/salt/amino acid (or any other valid substance) concentrations compared to afferent arteriole blood; 	
	TOTAL 16
QUESTIONSHEET 17	
high; renal artery; glomeruli; renal/Bowman's; ultrafiltration/high pressure; proteins; osmotic pressure; urea/uric acid/ammonia or any other; glucose;	TOTAL 9
QUESTIONSHEET 18	
 (a) have many mitochondria to produce much ATP; required as energy supply for large amount of active transport carried out (by these cells); allowing reabsorption of glucose/some amino acids/ some salts/ some urea; 	

thus the cavities of the glomerular capillaries and renal capsule are only separated by the basement membranes;

which are raised off their basement membrane;

(b) podocytes are epithelium/pavement cells;

this increases the efficiency of transport into the capsules of small molecules from the blood plasma/increases the efficiency of ultra filtration; **3**

(c) coffee contains caffeine;caffeine inhibits the release of ADH;thus no water can be reabsorbed by collecting ducts from urine;

microvilli increase surface area available for reabsorption;

.....

3

4

A2.3

HOMEOSTASIS

ANSWERS & MARK SCHEMES

QUESTIONSHEET 19

(a) the returns	egulation of the internal environment within narrow limits; making it independent of the external environment;	2
(b) (i)	Any three of: in freshwater, water enters the Amoeba by osmosis/ this water is collected into the contractile vacuole and expelled/ by an active/energy requiring process/thus maintains the osmotic concentration of Amoeba's cytoplasm/prevents bursting	;;;;; 3
(ii)	desert animals must conserve water since little is available; long loop of Henle means more salt is pumped out of loop into medulla of kidney; thus allows more water to be reabsorbed from collecting ducts (if ADH is present); (reject more water would be reabsorbed through the loop of Henle - it is impermeable to water)	3
(iii)	insect are small and mainly land animals/thus tend to lose water through their relatively large surface areas; uric acid is virtually insoluble in water; thus insect Malpighian tubules produce it to enable excretion of solid urine/so preventing water loss;	3
(c) (i)	diabetes insipidus;	1
(ii)	failure to synthesise ADH in the posterior pituitary gland;	1
	TOTAL	13

QUESTIONSHEET 20

Feature	GF	Urine]
Contains glucose	1	X];
Does not contain amino acids	X	X]; (about 2 g of amino acids
Has a pH of 3.5	X	X	; excreted per day as amine
Same composition of blood	X	X];
Never contains protein	1	 ✓ 	;

 (a) by blood buffering systems; such as haemoglobin/phosphate/ hydrogen carbonate/protein buffering systems; 	2
by control of ventilation/inspiration and expiration rate; which regulates the H ⁺ and HCO ₃ ⁻ concentrations in blood plasma;	2
(b) many hydrogen ions pass from plasma to glomerular filtrate during ultrafiltration (thus raising blood pH); hydrogen ions are actively secreted from blood into the distal convoluted tubules (also raising blood pH); but this lowers pH of tubular fluid; around pH 4.8 the active transport pumps can no longer force more H ⁺ into the tubule; therefore distal tubule cells also actively secrete ammonia/NH ₃ into tubule; this combines with H ⁺ and Cl ⁻ to make ammonium chloride (credit equation); buffering the urine pH (to pH 6.0);	max 5

ANSWERS & MARK SCHEMES

QUESTIONSHEET 22

(a) (i)	volume smaller/has passed through a filter;	1
(ii)	more water is reabsorbed in collecting duct (in the presence of ADH);	1
(b) (i)	blood urea passes freely from A to B during glomerular filtration; higher concentration at C due to water reabsorption reducing the volume of tubular fluid in proximal convoluted tu even more water reabsorption in F causes further concentration of urea in urine;	bule; 3
(ii)	from C to D as tubular fluid passes down into higher salt concentrations of medulla, salt diffuses into the tubule raising the concentration; from D to E active transport pumps salt out of tubule into surrounding interstitial fluid; thus concentration of salt falls in tubular fluid from D to E:	3
(iii)	proteins are large molecules/high molecular weight; cannot cross membranes separating glomerular blood and capsule fluid/substances with a molecular weight greater than 65,000 cannot cross filter;	2
(iv)	all glucose actively reabsorbed in proximal convoluted tubule;	1
	ΤΟΤΑΙ	. 11

QUESTIONSHEET 23

(a)	(i)	false; the kidneys are concerned with the regulation of blood and other body fluids, (this results in urine formation); the kidneys are concerned with excretion of toxic metabolic waste products, (this also results in urine formation);	3
	(ii)	false; on a hot day more water is lost from blood by sweating; thus blood volume falls/blood concentration rises and ADH release is stimulated causing water reabsorption from urine in collecting ducts;	3
	(iii)	true; uric acid is insoluble and so does not poison the embryo in the closed environment of the egg; also can be excreted as solid urine thus conserving water;	3
(b)	(i)	Any three of: dialysis is the separation of large molecules from small molecules/ across a differentially permeable membrane/ principle used in kidney machine/haemodialysis/peritoneal dialysis/ to remove toxic waste products from patient with kidney failure;;;	3
	(ii)	in incurable/irreversible kidney damage/patients on long term dialysis; when a kidney becomes available, usually from a recently dead donor/car accident victim; tissue antigens/ref HLA antigens of donor kidney and recipient must be close matching to avoid rejection problems;	3

TOTAL 15